Resonant signals in the lithosphere-atmosphere-ionosphere coupling

  • Pulinets, S. & Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model – A Unified Concept for the Validation of Seismic Precursors. J. Asian Earth Sci. 41371–382. https://doi.org/10.1016/j.jseaes.2010.03.005 (2011).

    ADS
    Article

    Google Scholar

  • Ouzunov, D. et al. Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space and ground observations: preliminary results. Terreq. Science. 24557-564 (2011).

    ADS
    Article

    Google Scholar

  • Oyama, K.-I. et al. Changes in the ionosphere before major earthquakes: report of the ionospheric precursor study group. Geosci. Lett. 36. https://doi.org/10.1186/s40562-016-0038-3 (2016).

    ADS
    Article

    Google Scholar

  • Chen, C.-H. et al. Resident waves in the ionosphere before the M6.1 Dali and M7.3 Qinghai earthquakes of May 21-22, 2021. Earth Space Sci. 9e2021EA002159. https://doi.org/10.1029/2021EA002159 (2022).

    ADS
    Article

    Google Scholar

  • Afraimovich, EL, Perevalova, NP, Plotnikov, AV & Uralov, AM Acoustic shock waves generated by earthquakes. Ann. Geophys. 19395–409 (2001).

    ADS
    Article

    Google Scholar

  • Ducic, V., Artru, J. & Lognonn’e, P. Ionospheric remote sensing of Rayleigh surface waves from the Denali earthquake. Geophys. Res. Lett. 301951. https://doi.org/10.1029/2003GL017812 (2003).

    ADS
    Article

    Google Scholar

  • Artru, J., Farges, T. & Lognonn’e, P. Acoustic waves generated from surface seismic waves: propagation properties determined from Doppler sounding observations and normal mode modelling. Geophys. J.Int. 1581067-1077 (2004).

    ADS
    Article

    Google Scholar

  • Roland, L. et al. The resonance response of the ionosphere imaged after the 2011 Tohoku-oki earthquake. Earth Planets Space 63853–857. https://doi.org/10.5047/eps.2011.06.020 (2011).

    ADS
    Article

    Google Scholar

  • Sun, YY, Oyama, K.-I., Liu, JY, Jhuang, HK & Cheng, CZ The neutral temperature in the ionospheric dynamo region and the density of the ionospheric region F during doublet earthquakes Wenchuan and Pingtung. Nat. Risk. System Ground Science. 111759–1768. https://doi.org/10.5194/nhess-11-1759-2011 (2011).

    ADS
    Article

    Google Scholar

  • Liu, JY et al. The vertical propagation of the disturbances triggered by the seismic waves of the M9.0 Tohoku earthquake of March 11, 2011 on Taiwan. Geophys. Res. Lett. 431759–1765. https://doi.org/10.1002/2015GL067487 (2016).

    ADS
    Article

    Google Scholar

  • Occhipinti, G., Lognonn’e, P., Kherani, EA & Hebert, H. Three-dimensional waveform modeling of the ionospheric signature induced by the 2004 Sumatra tsunami. Geophys. Res. Lett. 33(L20104), 2006. https://doi.org/10.1029/2006GL026865 (2006).

    Article

    Google Scholar

  • Kamiyama, M., Sugito, M., Kuse, M., Schekotov, A. & Hayakawa, MO On the precursors of the 2011 Tohoku earthquake: crustal movements and electromagnetic signatures. Geomat. Nat. Hazards Risk seven471–492. https://doi.org/10.1080/19475705.2014.937773(2106) (2016).

    Article

    Google Scholar

  • Chen, C.-H. et al. Individual wave propagations in the ionosphere and troposphere triggered by the eruption of the Hunga Tonga-Hunga Ha’apai submarine volcano on January 15, 2022. Telesens. 142179. https://doi.org/10.3390/rs14092179 (2022).

    ADS
    Article

    Google Scholar

  • Dautermann, T., Calais, E., Lognonné, P. & Mattioli, GS Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills volcano. Montserrat. Geophys. J.Int. 1791537-1546. https://doi.org/10.1111/j.1365-246X.2009.04390.x (2009).

    ADS
    Article

    Google Scholar

  • Sun, Y.-Y. et al. The explosive eruption of the submarine volcano in Tonga modulates the region E ionospheric current on January 15, 2022. Geophys. Res. Lett. 49e2022GL099621. https://doi.org/10.1029/2022GL099621 (2022).

    Article

    Google Scholar

  • Fitzgerald, TJ Observations of total electronic content disruption on GPS signals caused by a ground-level explosion. J.Atmos. Earth physics. 59829–834 (1997).

    ADS
    Article

    Google Scholar

  • Calais, E., Bernard Minster, J., Hofton, M. & Hedlin, M. Ionospheric signature of surface mine explosions from Global Positioning System measurements. Geophys. J.Int. 132191-202 (1998).

    ADS
    Article

    Google Scholar

  • Hayakawa, M. Predicting earthquakes with radio techniques (Wiley, 2015).

    Book

    Google Scholar

  • Hayakawa, M. Predicting earthquakes with electromagnetic phenomena. in Proceedings of the Aip conference (2016).

  • Kakinami, Y. et al. Tsunamigenic ionospheric hole. Geophys. Res. Lett. 39L00G27. https://doi.org/10.1029/2011GL050159 (2012).

    Article

    Google Scholar

  • Lognonńe, P., Cĺevede, E. & Kanamori, H. Calculation of seismograms and atmospheric oscillations by summation in normal mode for a spherical earth model with a realistic atmosphere. Geophys. J.Int. 135388–406 (1998).

    ADS
    Article

    Google Scholar

  • Liu, JY et al. Bow and stern waves triggered by the Moon Ghost Ship. Geophys. J.Int. 38L17109. https://doi.org/10.1029/2011GL048805 (2011).

    ADS
    Article

    Google Scholar

  • Sun, YY GNSS brings us back to the ground from the ionosphere. Geosci. Lett. 614. https://doi.org/10.1186/s40562-019-0144-0 (2019).

    ADS
    Article

    Google Scholar

  • Liu, JY, Tsai, HF & Jung, TK Total electron content obtained using the Global Positioning System. Terr. atmosphere. Ocean Sci. seven107–117 (1996).

    Article

    Google Scholar

  • Chen, C.-H. et al. A new instrumental network in Sichuan, China, to monitor vibrations and disturbances in the lithosphere, atmosphere and ionosphere. Surv. Geophys. 421425–1442. https://doi.org/10.1007/s10712-021-09665-1 (2021).

    ADS
    Article

    Google Scholar

  • Su, X., Meng, G., Sun, H. & Wu, W. Positioning performance of BDS observation of China Crustal Movement Observation Network and its potential application on crustal deformation . Sensors 183353. https://doi.org/10.3390/s18103353 (2018).

    ADS
    Article
    PubMed Center

    Google Scholar

  • Kunitsyn, VE, Padokhin, AM, Kurbatov, GA, Yasyukevich, YV & Morozov, YV Ionospheric TEC estimation with signals from various geostationary navigation satellites. GPS solution. 20877–884. https://doi.org/10.1007/s10291-015-0500-2 (2016).

    Article

    Google Scholar

  • Tape, C., Ringler, AT & Hampton, DL Recording the aurora on seismometers across Alaska. Earthquake. Res. Lett. 913039–3053. https://doi.org/10.1785/0220200161 (2020).

    Article

    Google Scholar

  • Chang, LC, Sun, Y.-Y., Yue, J., Wang, JC and Chien, S.-H. Consistent seasonal, annual and quasi-biennial variations in tidal amplitudes/ionospheric SPWs. J. Geophys. Res. Space physics 1216970–6985. https://doi.org/10.1002/2015JA022249 (2016).

    ADS
    Article

    Google Scholar

  • Cheng, P.-H. et al. Statistical study of itinerant mesoscale ionospheric disturbances in the low latitude ionosphere using an automatic algorithm. Earth Planets Space 73105. https://doi.org/10.1186/s40623-021-01432-1 (2021).

    ADS
    Article

    Google Scholar

  • Cabbage, MY et al. Traveling mesoscale ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. 447569–7577. https://doi.org/10.1002/2017GL073961 (2017).

    ADS
    Article

    Google Scholar

  • Chen, C.-H. et al. The LAI coupling associated with the Luxian M6 earthquake in China on September 16, 2021. Atmosphere 121621. https://doi.org/10.3390/atmos12121621 (2021).

    ADS
    Article

    Google Scholar

  • Chen, CH et al. Surface Deformation and Seismic Rebound: Implications and Applications. Surv. Geophys. 32291–313. https://doi.org/10.1007/s10712-011-9117-3 (2011).

    ADS
    Article

    Google Scholar

  • Chen, C.-H. et al. Determination of epicenters before earthquakes using distant seismic and GNSS data: overview of ground vibrations. Telesens. 123252. https://doi.org/10.3390/rs12193252 (2020).

    ADS
    Article

    Google Scholar

  • Bedford, JR et al. Months of thousand kilometer scale oscillations before large subduction earthquakes. Nature 580628–635 (2020).

    ADS
    CASE
    Article

    Google Scholar

  • Chen, C.-H. et al. Spatio-temporal changes in seismicity rate during earthquakes. Nat. System Earth Hazards Science. 203333–3341. https://doi.org/10.5194/nhess-20-3333-2020 (2020).

    ADS
    Article

    Google Scholar

  • About Lucille Thompson

    Check Also

    Mark McGowan must stand up to his future promise to protect forests

    After half a century of continuous community efforts to protect Western Australia’s forests, an end-of-logging …